首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78509篇
  免费   7286篇
  国内免费   3587篇
电工技术   5841篇
技术理论   5篇
综合类   6011篇
化学工业   16116篇
金属工艺   7284篇
机械仪表   5309篇
建筑科学   4817篇
矿业工程   3008篇
能源动力   2145篇
轻工业   6653篇
水利工程   1496篇
石油天然气   3491篇
武器工业   666篇
无线电   4008篇
一般工业技术   7130篇
冶金工业   6089篇
原子能技术   626篇
自动化技术   8687篇
  2024年   155篇
  2023年   910篇
  2022年   1743篇
  2021年   2230篇
  2020年   2449篇
  2019年   1865篇
  2018年   1631篇
  2017年   2152篇
  2016年   2552篇
  2015年   2746篇
  2014年   4842篇
  2013年   5079篇
  2012年   5815篇
  2011年   6099篇
  2010年   4404篇
  2009年   4561篇
  2008年   3983篇
  2007年   5114篇
  2006年   4915篇
  2005年   4199篇
  2004年   3607篇
  2003年   3202篇
  2002年   2742篇
  2001年   2371篇
  2000年   1943篇
  1999年   1598篇
  1998年   1226篇
  1997年   956篇
  1996年   921篇
  1995年   747篇
  1994年   612篇
  1993年   402篇
  1992年   361篇
  1991年   274篇
  1990年   196篇
  1989年   175篇
  1988年   131篇
  1987年   78篇
  1986年   63篇
  1985年   50篇
  1984年   45篇
  1983年   38篇
  1982年   21篇
  1981年   20篇
  1980年   28篇
  1979年   14篇
  1977年   15篇
  1961年   7篇
  1959年   12篇
  1951年   19篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
In recent years, public attention has been increasingly attracted to solving two inextricably linked problems - preventing the depletion of natural resources and protecting the environment from anthropogenic pollution. The annual consumption of livestock waste for biogas production is about 240 thousand m3 per year, which is 0.17% of the total manure produced at Russian agricultural enterprises. At present, the actual use of organic waste potentially suitable for biogas production is 2–3 orders of magnitude lower than the existing potential for organic waste. Currently, hydrogen energy is gaining immense popularity in the world due to the problem of depletion of non-renewable energy sources - hydrocarbons, and environmental pollution caused by their increasing consumption. Of particular interest is the dark process of producing hydrogen-containing biogas in the processing of organic waste under anaerobic conditions, which allows you to take advantage of both energy production and solving the problem of organic waste disposal. An energy analysis of a two-stage anaerobic liquid organic waste processing system with the production of hydrogen- and methane-containing biogases based on experimental data obtained in a laboratory plant with increased volume reactors was performed. The energy efficiency of the system is in the range of 1.91–2.74. Maximum energy efficiency was observed with a hydraulic retention time of 2.5 days in a dark fermentation reactor. The cost of electricity to produce 1 m3 of hydrogen was 1.093 kW·h with a hydraulic retention time of 2.5 days in the dark fermentation reactor. When the hydraulic retention time in the dark fermentation reactor was 1 day, the specific (in ratio to the processing rate of organic waste) energy costs to produce of 1 m3 of hydrogen were minimal in the considered hrt range, and amounted to 26 (W/m3 of hydrogen)/(m3 of waste/day). Thus, the system of two-stage anaerobic processing of liquid organic waste to produce hydrogen and methane-containing biogases is an energy-efficient way to both produce hydrogen and process organic waste.  相似文献   
32.
The explosion venting duct can effectively reduce the hazard degree of a gas explosion and conduct the venting energy to the safe area. To investigate the flame quantitative propagation law of explosion venting with a duct, the effects of hydrogen fraction and explosion venting duct length on jet flame propagation characteristics of premixed H2-air mixtures were analyzed through experiment and simulation. The experiment results under initial conditions of room temperature and 1 atm show that when hydrogen fraction was high enough, part of the unburned hydrogen was mixed with air again to reach an ignitable concentration, resulting in the secondary combustion was easier produced and the duration of the secondary flame increased. With the increase of venting duct length, the flame front distance and propagation velocity increased. Meanwhile, the spatial distribution of pressure field and temperature field, and the propagation process and mechanism of the flame venting with a duct were analyzed using FLUENT software. The variation of the pressure wave and the pressure reflection oscillation law in the explosion venting duct was captured. Therefore, in the industrial explosion venting design with a duct, the hazard caused by the coupling of venting pressure and venting flame under different fractions should be considered comprehensively.  相似文献   
33.
This paper provides a modified model reference adaptive control (MRAC) scheme to achieve better transient control performance for systems with unknown unmatched dynamics, where an adaptive law with guaranteed convergence is introduced. We first revisit the standard MRAC system and analyze the tracking error bound by using L2‐norm and Cauchy‐Schwartz inequality. Based on this analysis, we suggest a feasible way to compensate the undesired transient dynamics induced by the gradient descent–based adaptive laws subject to sluggish convergence or even parameter drift. Then, a modified adaptive law with an alternative leakage term containing the parameter estimation error is developed. With this adaptive law, the convergence of both the estimation error and tracking error can be proved simultaneously. This enhanced convergence property can contribute to deriving smoother control signal and improved control response. Moreover, this paper provides a simple and numerically feasible approach to online verify the well‐known persistent excitation condition by testing the positive definiteness of an introduced auxiliary matrix. Comparative simulations based on a benchmark 3‐DOF helicopter model are given to validate the effectiveness of the proposed MRAC approach and show the improved performance over several other MRAC schemes.  相似文献   
34.
WO3 is a potential material candidate for construction of photoanode for solar driven water splitting. In this work, μm-thick porous WO3 photoanode is prepared by depositing a stable ink made of WO3 nanoparticles and Aristoflex velvet polymer in water using the doctor blade technique, followed by a sintering in air. The nature of WO3 nanoparticles, its loading mass on F-doped tin oxide electrode as well as sintering temperature are examined in order to optimize the photocatalytic activity of the resultant WO3 photoanode. The operation of WO3 photoanode is investigated by varying the light illumination direction and light incident intensity as well as changing the nature of the electrolyte. Dissolved tungsten in electrolyte is quantified by ICP-MS providing insights into the influences of electrolyte nature and operating conditions to the corrosion of WO3. It is proposed that the H2O2 and OH. radical generated as by-products of the photo-driven water oxidation on the photoanode surface are harmful species that accelerate the dissolution of WO3.  相似文献   
35.
Ring-opening of epoxides with carboxylic acids has been widely used to prepare many high value intermediates in the polymer and pharmaceutical industries. Most of conventional processes proceeded in batch stirred reactors. As such they always suffer from low productivity and selectivity. Here we developed an advanced technology to perform the ring-opening reaction of epichlorohydrin with neodecanoic acid (NDA) for continuous production of 3-chloro-2-hydroxypropyl neodecanoate in a more efficient and safer way. A microreaction system where a microreactor connected to a stirred reactor was established. When the conversion of NDA rapidly reaching around 90% in a microreactor at 110°C, the reaction solution was transferred to a stirred reactor at 90°C. This two-stage operating mode can reduce the reaction time and improve the selectivity through free switching of temperature in the consecutive two reactors, thus substantially reducing the consumption of energy and materials.  相似文献   
36.
Large-scale strongly nonlinear and nonconvex mixed-integer nonlinear programming (MINLP) models frequently appear in optimization-based process synthesis, integration, intensification, and process control. However, they are usually difficult to solve by existing algorithms within acceptable time. In this study, we propose two robust homotopy continuation enhanced branch and bound (HCBB) algorithms (denoted as HCBB-FP and HCBB-RB) where the homotopy continuation method is employed to gradually approach the optimum of the NLP subproblem at a node from the solution at its parent node. A variable step length is adapted to effectively balance feasibility and computational efficiency. The computational results from solving four existing process synthesis problems demonstrate that the proposed HCBB algorithms can find the same optimal solution from different initial points, while the existing MINLP algorithms fail or find much worse solutions. In addition, HCBB-RB is superior to HCBB-FP due to much lower computational effort required for the same locally optimal solution.  相似文献   
37.
This study aims to investigate the effect of ultrasonic waveforms on the gas–liquid mass transfer process. For a given load power (P), continuous rectangular wave yielded stronger bubble oscillation and higher mass transfer coefficient (kLa) than continuous triangular and sinusoidal wave. For pulsed ultrasound, the kLa decreased monotonically with decreasing duty ratio (D), resulting in weak enhancement at low D (≤33%). For a given average load power (PA), concentrating the P for a shorter period resulted in a higher kLa due to stronger cavitation behavior. For a given PA and D, decreasing the pulse period (T) led to an increase in kLa, which reached a constant high level when the T fell below a critical value. By optimizing the D and T, a kLa equivalent to 92% of that under continuous ultrasound was obtained under pulsed ultrasound at a D of 67%, saving 33% in power consumption.  相似文献   
38.
《Ceramics International》2022,48(8):10885-10894
Lead-free bismuth sodium titanate-strontium titanate (NBT-ST) dielectric ceramic materials have been extensively investigated energy storage materials because of their relaxor characteristics. In this study, four different lanthanide elements were introduced into the ferroelectric NBT-ST ceramic to improve their relaxor properties. The introduction of the lanthanide resulted in an increase in disorder at location A within the perovskite lattice and improved relaxor characteristics, leading to a stored energy density of more than 3.5 J/cm3. In particular, an ultrahigh recoverable stored energy density of 4.94 J/cm3 and efficiency of 88.45% were achieved at 440 kV/cm when the NBT-ST ceramic was modified with neodymium. The modified ceramic also exhibited good thermal stability in the range of 30–120 °C, as well as a fast discharge time of ~153 ns, indicating that Nd-incorporated NBT-ST is a promising candidate for electrical energy storage ceramic.  相似文献   
39.
Self-adaptive surface measurements that can reduce data redundancy and improve time efficiency are in high demand in many fields of science and technology. For this purpose, a system implemented with Gaussian process (GP) adaptive sampling is developed. The non-parametric GP model is applied to reconstruct the topography and guide the subsequent sampling position, which is determined from the inference uncertainty estimation. A criterion is proposed to terminate the GP adaptive measurement automatically without any prior model or data of the topography. Experiments on typical surfaces validate the intelligence, adaptability, and high accuracy of the GP method along with the stabilization of the automatic iteration termination. Compared with traditional raster sampling, data redundancy is reduced and the time efficiency is improved without sacrificing the surface reconstruction accuracy. The proposed method can be implemented in other systems with similar measurement principles, thus benefitting surface characterizations.  相似文献   
40.
Since its first introduction in 2016, cold sintering process (CSP) has gained worldwide interest from the scientific community as green and innovative fabrication route due to the dramatic reduction of processing time, energy, and costs. Cold sintering resembles the geological formation of rocks where a ceramic powder is densified with the aid of a liquid phase under an intense external pressure and limited heating conditions (below 350 °C). Up to date, tens of different materials, including composites, have been successfully processed through CSP and extraordinary results in terms of densification, microstructure and final properties have been achieved. In the present review, processing features and variables, possible densification mechanisms and issues also for the realization of ceramic-based composites are explored. Advantages with respect to existing techniques are analysed and current challenges are described to lay the ground for new processing opportunities to be faced in the near future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号